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INTRODUCTION 

Advanced hypersonic flight vehicles generally utilize a win- 
dow concept to protect an optical or radar guidance sensor. 
This aero-window is formed by passing a high-speed gas jet 
across the front of  the lasering cavity so that the beam exits 
roughly in a direction perpendicular to the direction of  the 
gas flow. The compressible turbulent shear layer formed 
over optical windows can cause severe limitations to target 
detection and recognition, because the turbulent fluctuations 
especially density fluctuations will lead to the index-of-refrac- 
tion fluctuations [1]. For providing the exact location of  the 
object of  interest, one must predict the optical degradation 
caused by index-of-refraction fluctuation, or essentially, pre- 
dict the intensity of  density fluctuations in compressible tur- 
bulent shear layers. 

Lutz [2] derived a density fluctuation model from the 
differential form of  the Crocco-Busemann temperature solu- 
tions. This model neglected the pressure fluctuation in super- 
sonic boundary layers which was shown to be significant by 
the experimental data of Laderman and Demetriades [3]. A 
turbulent transport equation for the variance of index-of- 
refraction fluctuations was derived by Smith et al. [4] based 
on Spalding's scalar fluctuation transport equation [5]. The 
empirical constants used in ref. [4] were chosen to be those 
values used for the variance of  temperature fluctuations. 
Bogdanoff [6] obtained an equilibrium model by neglecting 
the convection term and diffusion term of  the scalar transport 
equation. This resulted in a mixing-length type equilibrium 
algebraic equation for scalar fluctuation quantity. The equi- 
librium assumption is only valid for the very near wall region, 
where the generation and destruction terms far outweigh 
other terms in the equation. Thus, taking into account the 
convection and diffusion terms was expected to provide sig- 
nificantly improved predictions over Bogdanoff's equi- 
librium model in flows in which the convection and diffusion 
are not negligible. Development of  a nonequilibrium 
algebraic model based on the second-order algebraic Rey- 
nolds stress model is the subject of this Note. 

THE ALGEBRAIC MODEL FOR SCALAR 
QUANTITY FLUCTUATIONS 

The fluctuations of  density or temperature can be treated 
as passive scalar having no effect on the mean flow [5]. 
Therefore, the equation of scalar quantity fluctuations is 
uncoupled from the governing equations. In some cases, the 
scalar quantity is not passive and does affect the mean flow. 
For example, the effects of  density fluctuations upon the 

mean flow are known to be significant for flows which are 
highly buoyant or for flows with large density differences 
induced by passing shocks. This situation is not considered in 
this study. The expression relating the mean-square random 
phase error and the index-of-refraction fluctuations across 
the shear layer is given as [8] 

~r = 2K 2 f ~-~Adv (1) 

where K is the wave number of  coherent radiation, n' is the 
fluctuation of  index-of-refraction, A is the length scale of  
the index-of-refraction fluctuations. The index-of-refraction 
may be related to the density through the Gladstone-Dale 
relation 

n = 1-}-tim p ~ ,  (2) 
Pref 

where tim is the Glads ton~Dale  constant for the mixture. 
So, for correcting the random phase error and improving the 
optical quality of  the laser beam, the accurate prediction of 
the density fluctuations is the key issue. 

Let g represent the intensity of  density fluctuation Px~P',  
then the transport equation of  g in the boundary layer can 
be derived (cf. refs. [4, 5]) and the modeled equation is given 
as  

Dg = ~_(p+,utt3g, ., !dp)2 C pg ~ '--,,--'P~ ,,, a>,) +c,,~, ~ - 2' k ' 

Convection Dif fus ion-Dg Production-P Dissipation-~ 

(3) 

where C~g = 2.8, C2g = 1.4. In the equilibrium model [6], the 
convection and diffusion terms of  the transport equation for 
g are neglected and the production and dissipation terms are 
set equal. The result is 

C1, k {Op~ 2 
g = ~ ~ #t t~yy j • (4) 

Utilizing similar ideas proposed for ASM (algebraic stress 
model for turbulence Reynolds stresses) by Rodi [8], the 
difference of the convection term and diffusion term of  the g 
transport equation can be related to that of  the turbulent 
kinetic energy (k) equation as 

P~tt_Dg g{x\ DtDk-Dk)" = ; i p  (5)  
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In boundary layers, this second-order based non- 
equilibrium model has the form 
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NOMENCLATURE 

C~ model constant in the scalar-fluctuation 
equation 

("2~ model constant in the scalar-fluctuation 
equation 

,q turbulent density fluctuation intensity 
/,- turbulent kinetic energy 
M~ free stream Mach number  
M, local turbulence Mach number  
U density-weighted mean axial velocit2r 

v lateral direction. 

Greek symbols 
?~ boundary layer thickness from experiments 
~: dissipation rate of  turbulent kinetic energy 
t~, I*~ molecular viscosity and turbulent eddy 

viscosity 
/~. p mean and fluctuating density 
a,: turbulent Schmidt number.  

(~!]~ f,.q~: q/ /cur: ) 

After rearrangement, we get the final algebraic form 

• / ? p \ :  

. q  ~ 

t4 i~ +(('>,_ Ibm 

(6) 

(7) 

This derivation is based on the scalar transport equation g 
originally modeled for low speed shear flows. For supersonic 
and hypersonic boundary layer flows, the augmentat ion of 
the dissipation of kinetic energy (e) in compressible tur- 
bulence due to its dilatational components  is found necessary 
[9]. The extra 'production'  of  ~: is modeled by making the ~ ~ 
model coefficient dependent on the local Mach number.  By ~- 
performing numerical experinaents on the standard boundary 
layer flows, this algebraic model for density fluctuation is 
modified as 

f@\:  

where 

.q = (8) 
/.=\~U -~ 

/ 1 , , 7 1  + ( ( ~  . - I)(I  +F,,,)p,: \or/ 

/~]., = 24M~/~5 (9) 

V'~'/a is the turbulence Mach number• a is the speed of iJV/t 

sound. 

The current nonequilibrium model is evaluated using sev- 
eral sets of  the experimental data of  density fluctuation inten- =- 
sity in high speed boundary layer flows. The GASP (general 
aerodynamic simulation program) code [10] was used to a.  ~- 
solve the fluid flow equations. The density-weighted averaged ~_ 
velocity fields, as well as the flow field turbulent kinetic 
energy (k) and the turbulent kinetic energy dissipation rate ~- 
(e) obtained from the GASP solutions were used to compute 
turbulent density fluctuation intensities according to equa- 
tion (8). A space marching technique was applied with 81 '~ 
grid points across the boundary layers. Grid-independent 
results were assured by using very fine grid meshes near the g~ 
wall regions. Detailed numerical methods and implemen- 
tations can be found in refs. [10, 11]. 

The supersonic adiabatic-wall boundary layer cases are 
calculated first. Figures 1 and 2 show the comparisons of 
computed density fluctuation profiles using the current non 

RESULTS AND DISCUSSION 

equilibrium model to the experimental data ref. [12]. Pre- 
dictions using the equilibrium model [6] as well as Lutz's 
results are also shown for references. The data and predicted 
values shown a maximum in the middle portion of the bound- 
ary layer and the density fluctuation intensity increase with 
larger free stream Mach number  M~. The current model 
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Fig. l. Density fluctuation profiles in adiabatic-wall tur- 
bulent boundary layers: experimental data of  ref. [12], 

M~. = 3.56. 

oo Exp. 112] ., 
• • Lutz model [2l ', 

- - "  - -  Current model 
- - - Equil. model ', 

0 0 • " 

6.; & 8.3 & 65 & 67 ~8 d9 i h 12 
y/8 

Fig. 2. Density fluctuation profiles in adiabatic-wall tur- 
bulent boundary layers, experimental data of  ref. [3]• 

M~ = 4.67. 
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adequately predicts the quantitive behaviour of density fluc- 
tuation intensity with in the boundary layers. 

The comparisons of the measured data of  refs. [3, 13] to 
computational ~ p ~ / p  profiles inside nonadiabatic super- 
sonic and hypersonic boundary layers by using the non- 
equilibrium model, the equilibrium model and Lutz's results 
are shown in Figs. 3 and 4. The results of the current model 
also agree more favourably with the experimental data, com- 
pared with the results obtained by the equilibrium model and 
Lutz's model. The predicted trend is in qualitative agreement 
with the data for hypersonic flow (Fig. 4). At the wall region 
of  a hypersonic boundary layer, the viscous dissipation 
coupled with the aerodynamic heating produced extra dis- 
sipation of the turbulent kinetic energy, which cannot be 
adequately modeled by the low-Reynolds-number two-equa- 
tion model [14]. This deficiency of  kinetic energy profile gives 

rise to the inaccurate predictions of  density fluctuations near 
the wall region. 

CONCLUSION 

To correct the sight-to-target degradation caused by the 
index-of-refraction fluctuation, the density fluctuation must 
be predicted, because the index-of-refraction fluctuation is 
strongly related to the density fluctuation. Lutz's model neg- 
lected pressure fluctuation that is unsound in supersonic 
flows. The equilibrium model does not account for the con- 
vection and diffusion mechanism of scalar fluctuation trans- 
port. The nonequilibrium second-order algebraic model 
described in this study avoids the equilibrium assumption 
and accounts for both the history and local effects through 
an algebraic transport assumption, as seen in equation (5). 
A series of  supersonic and hypersonic fiat plate boundary 
layer flows is utilized to test the new model. The new model 
shows a significant improvement on the prediction of the 
density fluctuation intensity over the equilibrium model and 
Lutz's model. 
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Fig. 3. Density fluctuation profiles in isothermal wall tur- 
bulent boundary layers, experimental data of ref. [13], 

M~ = 3.0, T~ = 226 K. 
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Fig. 4. Density fluctuation profiles in non-adiabatic wall 
turbulent boundary layers, experimental data of ref. [3], 

Me = 9.4, T,~ = 304 K. 
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